
3D Gyrokinetic Particle–In–Cell Codes

On The TC2000 And CM2 ∗

Timothy J. Williams and Y. Matsuda

Magnetic Fusion Energy Theory and Computations Group
Lawrence Livermore National Laboratory

Livermore, California 94550

Appeared in
The 1992 MPCI Yearly Report: Harnessing the Killer Micros

UCRL–ID–107022-92
August 1992

Abstract

We have ported a three–dimensional, electrostatic,
gyrokinetic, particle–in–cell (PIC) plasma simulation
code from the Cray2 to the BBN TC2000 and the
Thinking Machines CM2. On the TC2000, we em-
ployed the PFP split–join programming paradigm[?];
on the CM2 we employed the CM Fortran data–
parallel programming language. Though our hopes
to produce codes ten or more times faster than the
Cray2 code were not realized, we did produce codes
which run faster than the Cray2 code on much less ex-
pensive hardware—proof of the promise of massively
parallel computing. We are now able to run plasma
physics simulations with these parallel codes, includ-
ing some which are not practical on the Cray2.

1 Gyrokinetic PIC

1.1 Simulation Goals

Gyrokinetic particle-in-cell (PIC) simulation[?] is an
important tool for studying low-frequency (ω � ωci)
plasma instabilities and the associated transport of
particles and heat in tokamaks. In spite of the effi-
ciency gained by not following ion cyclotron motion,

∗This work performed by LLNL under DoE contract No. W–
7405–ENG–48.

more efficiency is needed in performing simulations on
a transport timescale. We have expended much ef-
fort to use additional physics simplifications and algo-
rithm improvements to reduce the computational cost
of our vectorized Cray2 simulations. An example of
a physics simplifications is the use of the δf method,
in which the particles sample the perturbation of the
phase–space distribution function away from a fixed
background rather than the entire distribution func-
tion; this, when coupled with a partial linearization
of the equations, can result in greatly reduced simu-
lation noise—allowing the use of fewer particles[?][?].
Examples of algorithm improvements we employ are
electron subcycling[?][?][?] and implicit timestepping
schemes[?].

We plan to use massively parallel computation to
achieve the computational speeds needed to run sim-
ulations with sufficient resolution and physics con-
tent to believably model turbulent transport in toka-
mak plasmas. Examples of physics properties missing
from our current simulation codes are magnetic fluc-
tuations (finite–β), toroidal geometry effects (highly
relevant for the toroidal tokamak plasmas), and par-
ticle collisions. All of these effects are being built
into Cray2 simulation codes, but all will add com-
putational cost—making it even more essential to use
massively parallel machines which allow running larger
and longer simulations than the Cray2 allows.

1



1.2 Simulation Method

The basic ideas behind gyrokinetic PIC simulation are
the same as those behind conventional PIC simula-
tion. Particle-in-cell codes simulate plasmas using su-
perparticles moving under self-consistent electromag-
netic fields defined on a spatial grid; each superpar-
ticle represents many physical plasma particles. The
(electromagnetic) force on each particle is computed
by interpolating the electromagnetic fields from some
set of neighboring points in the field grid. From these
forces, accelerations are computed to update veloci-
ties, which in turn are applied to update the particle
positions. Charge densities (and current densities, for
non–electrostatic simulations) are then accumulated
from the particle positions (and velocities) onto field
grids, using an interpolation formula to compute each
particle’s contribution to a small set of nearby grid
points. The field equations (Maxwell’s equations) are
then solved on the grid to yield updated electromag-
netic fields; this closes the self–consistent loop, allow-
ing computation of new forces to push the particles
again, etc.

1.3 Computational Characteristics

The interpolation of forces from field-grid arrays to
particle positions, and the complementary accumula-
tion of densities from particle data to grid arrays are
key elements of the PIC method. Another key element
is the solution of the field equations, which are elliptic
equations (boundary–value problems). Depending on
the parallel programming paradigm used, these differ-
ent elements present different types of problems for
parallel simulation.

One paradigm is domain–decomposition and
message–passing (DDMP). One decomposes the spa-
tial simulation domain into subdomains; each proces-
sor used computes data on one subdomain. The gath-
ers and scatters for the force computation and charge
accumulation needn’t be parallelized—each processor
does them serially on only the data in its domain,
which is stored in that processor’s local memory. As
the particles move across the subdomain boundaries,
and their data is passed to neighboring processors in
messages, there is the potential for load imbalance to
develop because regions of high and low particle den-
sity appear. This load imbalance can be reduced or
eliminated by dynamically revising the subdomains.
For gyrokinetic PIC simulations this is not an ex-
tremely important issue, because the mathematical
formulation precludes large nonuniformities in particle
densities. A problem faced by the DDMP programmer

is difficulty in solving the field equations—for which
FFT methods are typically used—on the domain–
decomposed field–grid arrays. Liewer et. al. re-
port that their conventional PIC simulations on purely
distributed–memory MIMD machines are not as lim-
ited by load imbalance, which they control with dy-
namic subdomain revision, as they are limited by the
expense of the FFT computation for solving the field
equations.[?][?] In contrast, the FFT–based field equa-
tion solution is O(1%) of the run time in our Cray2
simulations.

Another paradigm is the data–parallel model tradi-
tionally used in programming the CM2. From the pro-
grammer’s viewpoint, the data arrays are all treated
as globally–addressable (i.e., arbitrary sections of the
data arrays are referenced in the code as single objects;
the compiler and hardware automatically distribute
the data elements among the processors). The gath-
ers and scatters for the force computation and charge
accumulation require communication of data between
particle and field–grid arrays in a random pattern.
These gathers and scatters, even when optimized us-
ing simulated annealing methods, have been shown to
burn as much as 75% of the computer time in gyroki-
netic PIC simulations on the CM2[?]. In contrast with
DDMP, this method can work well for solution of the
field equations—especially if they are solved using the
very fast FFT’s possible on the CM2, for example.

Yet another paradigm of particular interest to the
MPCI is the split–join model embodied in PCP and
PFP[?]. This paradigm provides explicit support for
both local memory and globally–addressable memory;
for this reason, it is particularly well–suited to the
TC2000. Sticking strictly to the PFP paradigm re-
quires storing at least the field–grid data as globally–
addressable arrays in order to solve the boundary–
value field equations. This implies the same ran-
domized gathers and scatters as in the data–parallel
paradigm, but the extremely high bandwidth and uni-
form interconnectedness of the TC2000 processor net-
work allows this to happen more efficiently than on
the CM2 (this will be detailed in a future publica-
tion). This method can also work well for solving the
field equations; very fast multidimensional FFT’s are
possible if one makes use of the local/global memory
heirarchy on the TC2000 and designed into the PFP
paradigm.

2



2 TC2000

2.1 The Machine

Refer to our earlier report[?] for a description of the
TC2000 hardware and a horsepower comparison with
the Cray2 and CM2. The key features of the TC2000
for our programming purposes are that (1) it supports
hardware global data memory access as well as local
memory access, (2) it’s readily available to us here at
LLNL, and (3) it provides excellent parallel debugging
and analysis tools for code development. Our plan
for the TC2000 has been to use it as a development
platform for parallel codes—to do scaling studies, but
not necessarily to do production physics runs.

2.2 PFP

As mentioned in Section ??, we employ the PCP/PFP
parallel programming paradigms on the TC2000. The
Parallel C Preprocessor and Parallel Fortran Prepro-
cessor (PCP and PFP)[?][?] are implementations of
the split-join parallel programming paradigm which
are descended from SPMD model [?] and The Force
[?]. In this paradigm, a fixed-CPU-count team of pro-
cessors enters the code; all members execute the code
unless instructed otherwise by special preprocessed
control statements embedded in the C or Fortran code.
The team has a master processor, which can be specif-
ically accessed for scalar code blocks or other special
purposes. The team can be split to do independent
code blocks or to execute the same code on indepen-
dent data.

To use PCP/PFP, one inserts special kewords and
control statements into his plain C/Fortran code.
These are preprocessed and the output is fed into the
C/Fortran compiler. The number and variety of these
extra coding constructs is limited, making the system
relatively easy to program with. To run the codes, one
specifies the fixed number of processors in the team
which enters the code before the execution begins.
Our earlier report[?] includes some coding examples
for PIC codes along with this general outline of the
PCP/PFP ideas.

2.3 Data Layout

The particle data consists of position and velocity ar-
rays for each of the three dimensions. The particles are
divided equally among all the processors; each stores
its equal share of the particle data in its local memory.
Each particle array is a floating–point vector of length
Nparticles/Nprocessors.

The field data (grid–array data) is stored in
a globally–addressable 3D floating–point array, us-
ing the shared interleaved storage provided on the
TC2000. For this type of electrostatic simulation,
there are at most four arrays: one for the scalar po-
tential, one for the charge density, and three for the
three components of the electric field. We have in
fact eliminated the use of arrays to store the electric
field; we compute the electric field for the force com-
putation using analytic derivatives of the interpolation
formula.[?] For problems which are small enough, it is
sometimes faster in absolute execution time for each
processor to store a local copy of the entire charge
density grid array, accumulate from it’s local particle
data into that local copy, then do a locked sum into
the global array (see Section ?? below).

2.4 Scalings

2.4.1 Force computation and particle push

Given the accelerations for all particles, the timestep-
ping of the velocities and then the positions is perfectly
parallel over the number of particles in the simulation.
The only source of inefficiency in this part of the pro-
gram is switch contention in the global memory fetch
from the field arrays which must be done for every par-
ticle in order to interpolate the electromagnetic forces
to the particle’s position. Figure ?? shows linear scal-
ing of the force computation and particle push with
Nprocessors. If we define the parallel efficiency to be

ε ≡ 1
Nprocessors

× T1

TNprocessors

,

where T1 is the time for execution on one processor, we
measure ε = 0.95 for 118 processors from the data used
to produce Figure ??. This efficiency could possibly
be increased even more by enabling caching of data
from the field arrays before reading them in the force–
gather loop.

2.4.2 Charge accumulation

As described in our earlier report[?], this part of the
PIC algorithm is tricky to do in parallel because of the
data dependency inherent in the scatter operation. We
have investigated three ways to attack this problem:

(1) Maintain local copies of the entire charge density
array on all processors. This makes the accumulation
operation for each processor’s particles a purely local–
memory operation, scattering from the local particle
data array into the local grid–array. Each local ar-
ray contains a part of the total charge density; these

3



0

20

40

60

80

100

120

0 20 40 60 80 100 120

N
proc

TC2000 Timings--Push

LocalCopy

Lock

linear

S
p
ee

d
u
p

Figure 1: Measured speedups of the particle push, in-
cluding the force computation (gather) in the TC2000
code. The two different charge accumulation meth-
ods described later in the text have no impact on this
part of the code. The short–dashed curve is the theo-
retical ideal linear speedup. Run parameters: 115351
particles, 32768 grid cells.

must all be summed together into the global array to
yield that total charge density. Each processor must
lock each element of the global array as it adds in its
contribution. Rather than use the general lock func-
tion provided by PFP, we use a lightweight floating–
point atomic add assembler function from BBN; basi-
cally, this procedure uses the floating–point number to
be added as a semaphore[?]. For small–grid systems
with many particles per grid cell, and for larger–grid
systems run with a small enough number of proces-
sors, this method of parallel charge accumulation is
the fastest in absolute execution time because it makes
the most use of local memory versus global memory.
Of course, it is only applicable to problems for which
the grid is small enough to store the local copies on
each processor. There is a fundamental limit on scal-
ing of this method with Nprocessors, though: it can
never be done faster than the amount of time it takes
a single processor to loop through all the grid cells.
This is because each processor must loop through all
the cells in its local grid array when it sums them
into the global array to get the total charge density.
The flattening of the solid curve in Figure ?? shows
this limit. Lock–conflicts with other processors are an-
other drag on this method, as exhibited by the slight
downward turn of this curve at high processor count.
The measured parallel efficiency is ε = 0.08 with 118

processors.
(2) Use only the global charge density array. As it

loops through its particles, each processor must lock
the appropriate element of the charge density array for
each particle. Even though each particle contributes
to a small neighborhood of grid cells, according to an
interpolation formula, only one cell at a time must be
locked. The sources of inefficiency in this method are
the time spend calling the lock function itself and the
time spent waiting for a lock to clear in the event that
another processor is locking the same element. As in
method (1), we use an assembly–language floating–
point atomic addition routine which is probably the
fastest possible way to implement a lock function
on the TC2000. The large–dash curve in Figure ??
shows the scaling of this method with processor count.
Clearly the scaling is better than method (1), but the
measured parallel efficiency ε = 0.5 with 118 proces-
sors is still the efficiency bottleneck for this code. The
choice whether to use method (1) or method (2) in
practice is not as clear as the scaling curves would in-
dicate. The curves in Figure ?? show the absolute ex-
ecution times of the charge accumulation for the two
methods. For small processor counts method (1) is
faster (and the entire code is consequently faster); for
large processor counts method (2) eventually wins out,
and the entire code is also faster with this method.

(3) Sort the particle data. In early versions of the
code, the particle data was stored in global arrays
rather than divided up into local arrays. As described
in our earlier report[?], sorting methods such as those
used to vectorize charge accumulation on vector su-
percomputer PIC codes can be employed to parallelize
the operation on massively parallel machines. We im-
plemented a parallel quicksort algorithm in a 1D PIC
code as a demonstration of the method, but our sort
scaled poorly with processor count and was a bottle-
neck for code execution speed. Since then we have not
found a parallel sorting method which scales linearly
with processor count and correctly sorts our particle
data. With our new local storage of particle data, the
situation has changed; we are currently pursuing other
ways to improve our parallel PIC codes, but this sub-
ject may ultimately be revisited if the nodes in mas-
sively parallel machines become vector processors.

2.4.3 FFT

We have modified a multidimensional complex–
to–complex parallel FFT algorithm developed by
A. Berno[?] to perform the real–to–complex FFT’s
used in our solution of the field equations. The basic
method is a time–honored one in parallel computation:

4



0

20

40

60

80

100

120

0 20 40 60 80 100 120

N
proc

TC2000 Timings--Charge Accumulation

LocalCopy

Lock

linear

S
p
ee

d
u
p

Figure 2: Measured speedups of charge accumula-
tion (gather) in the TC2000 Code, using two differ-
ent methods described in the text. The short–dashed
curve is the theoretical ideal linear speedup. Run pa-
rameters: 115351 particles, 32768 grid cells.

1

10

100

1000

0 20 40 60 80 100 120

N
proc

TC2000 Timings--Charge Accumulation CPU Times

LocalCopy

Lock

C
P

U
 T

im
e 

(µ
se

c/
p
ar

ti
cl

e/
∆

t)

Figure 3: Measured actual CPU times for charge ac-
cumulation (gather) in the TC2000 Code, using two
different methods described in the text. Run parame-
ters: 115351 particles, 32768 grid cells.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

N
proc

TC2000 Timings--FFT

LocalCopy

Lock

linear

S
p
ee

d
u
p

Figure 4: Measured speedups of the parallel FFT in
the TC2000 Code. Note that the two different charge
accumulation methods have no impact on this part of
the code. The short–dashed curve is the theoretical
ideal linear speedup. Run parameters: 115351 parti-
cles, 32768 grid cells.

perform serial FFT’s in one dimension, effecting paral-
lelism along the other two dimensions. The processors
transform (in parallel) 1D strips along one of the three
dimensions, then synchronize and transform 1D strips
along the second dimension, then do the same for the
third. The minimum amount of parallel work available
goes like half the smallest product of the numbers of
grid cells between any two dimensions of the simu-
lation grid. (The factor of a half comes in because
this is a real–to–complex FFT, and two 1D strips of
data from the array are combined together and treated
as a single complex strip for processing.) This FFT
method takes advantage of the memory heirarchy on
the TC2000 by doing simple copies back and forth
from strips of global array elements to local 1D vec-
tors. The 1D transforms are thereby rendered com-
pletely local in memory. Figure ?? shows the scaling
of this FFT with processor count. The measured par-
allel efficiency at 118 processors is ε = 0.77. This
simulation has a 32 × 32 × 32 grid, so the minimum
number of 1D strips available for parallel processing
is 32 ∗ 32 ∗ 0.5 = 512; a more precise study of the effi-
ciency of this part of the algorithm will be presented
in a future publication.

2.4.4 Field equation solve

We solve the Poisson equation in k-space, employing
the aforementioned parallel FFT. There is an iteration

5



involved because of our representation of the electrons
in the plasma by a simple Boltzmann response, but
basically the solution reduces to an algebraic equation
in k-space. This reduction alone is a strong motivator
for using Fourier methods for field equations in PIC
codes, but additional complications peculiar to the gy-
rokinetic field equations make it even more desirable.
(Specifically, there is a simple k-space representation
of a Bessel function which in general is a path integral
in configuration space.) Figure ?? shows the scaling
of this field–equation solution, exclusive of the FFT
operations, with processor count. There are large fluc-
tuations in the measurements because this is a small
fraction of the total code execution time, and we are
seeing the precision limits of our timing method.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

N
proc

TC2000 Timings--Field Solve

LocalCopy

Lock

linear

S
p
ee

d
u
p

Figure 5: Measured speedups of field equation solve
(excluding FFT) in the TC2000 Code. Note that the
two different charge accumulation methods have no
impact on this part of the code. The fluctuations in
the data values are caused by imprecision of our timing
method for this small part of the overall code execu-
tion time. The short–dashed curve is the theoretical
ideal linear speedup. Run parameters: 115351 parti-
cles, 32768 grid cells.

2.4.5 Whole code

Figure ?? shows the scaling of the whole PIC code
with processor count. The efficiency of the code is de-
pendent on a number of parameters, a key one being
the number of particles per cell. More detailed param-
eter studies will be presented in a future publication.
These curves demonstrate the aforementioned claim
that the local–grid–copy method is faster at low pro-
cessor counts and slower at high processor counts. The
parallel efficiency at 118 processors is ε = 0.65 for the

local–grid–copy method. The relative contributions of
the different parts of the code to the execution times
at 118 processors are summarized in the following ta-
ble. The “Field Solve” entry excludes the FFT time,
which is listed separately. The “Push” entry includes
the force computation. The “LocalCopy” and “Lock”
column headings refer to methods (1) and (2) of doing
the parallel charge accumulation. The total execution
times are in microseconds per particle per timestep.

BREAKDOWN OF EXECUTION TIME
LocalCopy Lock

Charge Accumulation 61.4% 52.4%
FFT 14.2% 18.0%
Field Solve 6.3% 7.2%
Push 18.0% 22.4%

Total Execution Time
(µsec/particle/∆t) 21.4 µsec 16.9 µsec

0

20

40

60

80

100

120

0 20 40 60 80 100 120

N
proc

TC2000 Timings--Whole Code

LocalCopy

Lock

linear

S
p
ee

d
u
p

Figure 6: Measured speedups of whole simulation code
on the TC2000 Code, using two different charge accu-
mulation methods described in the text. The short–
dashed curve is the theoretical ideal linear speedup.
Run parameters: 115351 particles, 32768 grid cells.

3 CM2

3.1 The Machine

Refer to our earlier report[?] for a description of the
CM2 hardware and a horsepower comparison with the
Cray2 and TC2000. The key features of the CM2
for our programming purposes are that (1) it provides
the CM Fortran data–parallel programming language,

6



which implements parallelism in a rather straightfor-
ward translation from the Cray2 code; (2) the machine
at Los Alamos National Laboratory is readily avail-
able to us for development work; and (3) it has the
potential horsepower to run very fast, and to run very
large codes. Our hope has been to use this machine
to do new production physics simulations in regimes
unreachable with the Cray2.

3.2 CM Fortran

As mentioned in ??, and in our earlier report[?], we
employ the CM Fortran data–parallel programming
language on the CM2. CM Fortran is a sub/superset
of Fortran 90; it uses array syntax rather than looping,
and includes statements giving some control over how
the data is aligned on the virtual processor mesh in the
machine. Our earlier report[?] includes some coding
examples for PIC codes along with this general outline
of the CM Fortran ideas.

3.3 Data Layout

The key data structures in the program—the particle
data arrays and the field–grid arrays—are stored in
CM2 arrays laid out in the canonical way across the
mesh of virtual processors. The particle data consists
of 1D position and velocity floating–point arrays for
each of the three dimensions. Each particle array is
a floating-point vector of length Nparticles. The field
data is stored in 3D floating–point arrays. Since the
particle arrays and grid arrays are of different shape,
and since the locations of the particles in the spatial
grid change randomly as the simulation evolves, there
is no regular pattern of communication between the
elements of the particle arrays and the elements of the
grid arrays. The communication happens during the
force computation (gather) and charge accumulation
(scatter).

The gather involves reading a finite set of grid ar-
ray elements for each particle to compute the force for
that particle. The acceleration associated with that
force then updates the particle’s velocity, which in
turn updates the particle’s position. No special means
are employed for retrieving the grid array elements;
the CM2 router hardware takes care of setting up the
communication paths through its internal hypercube
connection topology. One would expect this to be for-
mally less efficient than the equivalent read from the
global field grid array on the TC2000 because of the
varying lengths of the communication paths on the
CM2; a single fetch may involve hopping across and
back across many nodes, while it involves only a single

switch connection–path on the TC2000. Technically,
this operation on the CM2 is handled by the forall
statement of CM Fortran.

The scatter involves adding charge–density con-
tributions to a finite set of grid array elements for
each particle. Because many particles may contribute
to the same grid cell, there is a data dependency
to be resolved. We use the CM2 library function
CMF SEND ADD for this purpose; this is the equivalent
of the floating–point atomic add used for the charge
accumulation into the global charge density array on
the TC2000.

3.4 Scalings

The conventional methods of computing parallel effi-
ciencies and scalings with processor count do not apply
on the CM2 because the machine is not a collection
of independently–programmable processors. In par-
ticular, one can’t run on one processor. However, a
fully–configured CM2

is divided into 4 quadrants of 16K one–bit proces-
sors, so it is possible to check for linearity by running
the same problem on one quadrant, two quadrants,
and the whole machine. Unfortunately, using more
than one quadrant of LANL CM2 requires special bu-
reaucratic procedures, so we have not yet gathered
sufficient data to measure scaling in many different
paramater regimes. Figure ??, however, is a reason-
able example; it shows the overall code execution time
for a fixed problem using one quarter, one half, and
all of the one–bit processors. This run had 65536 par-
ticles and 65536 grid cells. Roughly, the CPU time
scales down linearly with processor count.

If we define a modified parallel efficiency

ε′ ≡ 16K
Nproc

× T16K

TNproc

,

we measure ε′32K = 0.95 and ε′64K = 0.79 As men-
tioned in our earlier report[?], our emphasis on this
machine has always been to seek maximum absolute
computational speeds without as much regard for ef-
ficiency as is the case on the TC2000, where efficiency
measurements are easier and where we had expected
lower absolute computational speeds.

includegraphics[width=3.25in,trim=100 235 100
205]CM2Timings.eps

Figure 7: Timings of CM2 code using 16K, 32K, and
64K bit–processors. Run parameters: 64K particles,
64K grid cells.

7



4 Absolute Timings

The following table sumarizes our absolute code tim-
ing measurements on the Cray2, TC2000, and CM2
codes. The times are in a conventional unit used
for timing PIC codes: microseconds per particle per
timestep. The Cray2 code is fully vectorized and
scalar optimized by the CRI FPP fortran preprocessor
and CFT77 compiler; it is also optimized by the CRI
FMP fortran preprocessor, which inserts compler di-
rectives for autotasking (loop–level multiprocessing).
It was run on the NERSC 8–processor Cray2, under
a night–time system load. Because there is no equiv-
alent to the MPCI Gang Scheduler to guarantee run–
time on more than one processor, multitasking perfor-
mance is poor (in fact, the code runs faster on one pro-
cessor than it does on eight). The CM2 code was run
on the whole Los Alamos ACL machine in batch mode
(i.e., with no other processes running or resident in the
machine). The TC2000 code was run on 118 proces-
sors in benchmark (single–user) mode. (N.B.: These
runs were also made in interactive (multi–user) mode,
which yielded almost exactly the same timings; this
indicates that butterfly switch contention with other
users is not a major factor for running this code.) The
highest scalar Fortran optimization level which pro-
duced correct answers was used. For Run I, the local–
grid–copy method for charge accumulation was used;
for Run II, the global–array–only method was used.
The “BIT” annotations in the tables refer to the pre-
cision of floating point numbers. Runs I and II are for
two different parameter sets: Run I has 269001 parti-
cles and 16K grid cells; Run II has 1M particles and
256K grid cells.

64–BIT FLOATING–POINT TIMINGS
(µsec/particle/∆t)

Run I Run II
Cray2 30µsec 30µsec
TC2000 15µsec 26µsec
CM2 33µsec 26µsec

32–BIT FLOATING–POINT TIMINGS
(µsec/particle/∆t)

Run I Run II
TC2000 9µsec 15µsec
CM2 26µsec 20µsec

Basically, these results demonstrate that our codes
on the massively parallel machines are capable of ex-
ceeding the performance of the optimized Cray2 code.
The parallel machines now offer three advantages over

running on the Cray2: faster codes, the added compu-
tational and memory efficiency of 32-bit floating–point
arithmetic, and the larger total available memory on
CM2. By making use of these advantages, we are now
in a position to run physics simulations which were
previously impractical or impossible on the Cray2.
The high performance of the TC2000 code is a pleas-
ant surprise. Contrary to our original plans to use the
TC2000 only as a scaling–study machine, we are now
planning some production physics simulations for this
machine as well as for the CM2.

5 CM2 + TC2000 = CM5

Our current research includes work in collaboration
with Eric Salo to effect a domain–decomposition of the
field grid arrays. This will eliminate the global mem-
ory access and data dependency in the charge accu-
mulation, but it will require a dynamic load–balancing
scheme to transfer particles among processors as they
move across the subdomain boundaries; it will proba-
bly pass the data as messages. Furthermore, as men-
tioned in Section ??, this might also require some spe-
cial means to solve the field equations on the domain–
decomposed field–grid arrays (whose subdomains re-
side in different processors’ local memories). We hope,
however, to work around this difficulty by maintaining
global memory access to the field–grid arrays. We plan
to attempt to use the forthcoming Parallel Data Dis-
tribution Preprocessor (PDDP)[?] to block–distribute
a globally–addressable field grid array across the pro-
cessors such that each block is, in fact, a subdomain.
This would allow continued use of our current parallel
FFT algorithm for solving for the field equations.

This code design, we believe, may be a useful pro-
totype for porting the simulation code to the CM5. It
may be that the hybrid split–join/DDMP algorithm,
when combined with aspects of our data–parallel CM2
code, can yield an efficient match to the hardware and
software of the CM5.

6 In Memory of Yoshi Matsuda

The tragic death of Yoshiyuki Matsuda in October
of 1991 shocked and saddened those of us who knew
and worked with him. Some of the results in this re-
port represent his last work. Yoshi’s optimistic vision
of the promise of massively parallel computing, and
his enthusiasm in pursuing that promise, were an in-
spiration to me especially. The work presented here
and its continuation keep alive in our memories this

8



one small aspect of a person who is greatly missed.
—T. Williams, April 1992.

References

[1] Eugene D. Brooks III, UCRL-99673, LLNL (1988).

[2] W. W. Lee, J. Comput. Phys. 72 243 (1987)

[3] A. M. Dimits and W. W. Lee, “Partially
Linearized Algorithms in Gyrokinetic Particle
Simulations,”PPPL–2718, Oct. 1990.

[4] M. Kotchenreuther, Bull. Am. Phys. Soc. 34, 2107
(1988).

[5] T. J. Williams,“Improved Gyrokinetic Simulation
Techniques,” Proceedings of the 13th International
Conference on the Numerical Simulation of Plas-
mas, (Sept. 1989).

[6] B. I. Cohen, et. al.,“Gyrokinetic Code Devel-
opment,”Bull. Am. Phys. Soc., 35, 2038, (Nov.
1990).

[7] Timothy J. Williams, B. I. Cohen, and
R. D. Sydora, “Optimizing Gyrokinetic Sim-
ulation Techniques,”Bull. Am. Phys. Soc., 34,
2044, (Nov. 1989).

[8] B. I. Cohen and Timothy J. Williams, “Semi–
Implicit Particle Simulation of Kinetic Plasma
Phenomena,”J. Comput. Phys. 97, 224 (1991).

[9] P. C. Liewer and R. D. Ferraro, “A 2D Electro-
magnetic PIC Code for Distributed Memory Par-
allel Computers”, Proceedings of the 14th Interna-
tional Conference on the Numerical Simulation of
Plasmas, (Sept. 1991).

[10] P. C. Liewer and V. K. Decyk, J. Comput. Phys.
85, 302 (1989).

[11] J. V. W. Reynders and W. W. Lee, “3D Electro-
static Gyrokinetic Simulations on Parallel Archi-
tectures,”, Proceedings of the 14th International
Conference on the Numerical Simulation of Plas-
mas, (Sept. 1991).

[12] T. J. Williams, Y. Matsuda, and
E. Boerner,“Parallel Particle Simulation On
the TC2000 and CM–2,” in The MPCI Yearly
Report: The Attack of the Killer Micros, UCRL–
ID–107022 (1991)

[13] PFP authors: E. D. Brooks III and K. Warren,
LLNL.

[14] e.g., see A. H. Karp, “Programming for Paral-
lelism,” Computer 20, 43 (1987).

[15] H. F. Jordan et.al.,”The Force: A Highly Porable
Parallel Processing Language,” Proc. 1989 Inter-
national Conference on Parallel Processing, IEEE
II, 112 (1989).

[16] A. .M. Dimits and J. Byers, private communica-
tion.

[17] D. Foster, B. Gorda, private communication.

[18] A. Berno, private communication.

[19] PDDP authors: Brent Gorda and Karen Warren,
LLNL.

9


